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Abstract This study considers both a single and multi-mode viscoelastic analysis for wire-coating
fows. The numerical simulations utilise a finite element time-stepping technique, a Taylor-Petrov-
Galerkin/pressure-correction scheme employing both coupled and decoupled procedures between
stress and kinematic fields. An exponential Phan-Thein/Tanner model is used to predict pressure-
drop and residual stress for this process. Rheomeltrical data fitting is performed for steady shear
and pure extensional flows, considering both high and low density polyethylene melts. Simulations
are conducted to match experimental pressure-drop/flowrate data for a contraction flow. Then, for
a complex industrial wire-coating flow, stress and pressure drop arve predicted numerically and
quantified. The benefits are extolled of the use of a multi-mode model that can incorporate a wide-
range discrete relaxation spectrum to represent flow response in complex settings. Contrast is
made between LDPE and HDPE polymers, and dependency on individual relaxation modes is
identified in its contribution to overall flow behaviour.

1. Introduction

In the field of polymer coating of wires, experimental studies are extremely
difficult to perform due to the small size of the dies and minute volume of
polymer melt within the region of interest. This leads to the need for numerical
simulation as a predictive aid to optimise the process via die design and flow
modelling. This allows for the analysis of variation in certain key parameters,
without having to resort to trial-and error expensive and difficult experiments.
There are two basic types of cable or wire-coating die designs commonly
employed. These are represented schematically in Figure 1, and are termed
pressure and tube-tooling designs. In pressure-tooling, the melt is driven under
pressure making contact with the wire inside the die. In contrast, for tube-
tooling, the melt is drawn down by the motion of the wire and the melt is
extruded beyond the die. In both instances, the geometry is annular in cross
section. The setting of the flow geometry is found to be crucial in obtaining
optimal coatings.

There have been a number of studies that have addressed the modelling of
wire-coating flows; see for example Fenner and Williams (1967); Caswell and
Tanner (1978), Mitsoulis (1986); Mitsoulis ef al (1988); Huang et al (1994);
Binding et al. (1996) for pressure-tooling, and Gunter ef al. (1996); Mutlu ef al.
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(1998a); Mutlu et al. (1998b); Mutlu et al. (1997) for tube-tooling. These have
provided some progress within the inelastic, non-isothermal and viscoelastic
regimes. In a wider flow and processing context, some recent attempts have
been made to embrace differential multi-mode simulations, see for example the
works of Baaijens (1994); Baaijens et al. (1997); Azaiez et al. (1996) and Gupta
et al. (1997). Such a multi-mode approach for differential constitutive models is
more costly, yet can provide a more accurate representation of the material
rheology. The present study addresses the significance of employing a multi-
mode, as opposed to a single-mode, differential constitutive modelling approach to
predict numerically the behaviour of tube-tooling wire-coating flows for two
polymer melts, low and high density polyethylene. We concentrate on the
quality and significance of numerical predictions attainable from multi-mode
approximations in contrast to single-mode alternatives. The modelling assumes
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incompressible melt flow, isothermal conditions, no-slip within the die, and an
estimated location for the free-surfaces, see Refs. Mutlu ef @l (1998a); Mutlu
et al., 1998b, Practical experience from the process itself provides this location.

We are concerned with two parts of the tube-tooling wire-coating process,
namely flow within the die itself and a draw-down flow beyond the die onto the
wire cable. The flow is generated by a pressure head and the dragging action of
the moving wire. This type of tooling design is prevalent for wide bore cables,
or outer coatings of multi-cable combinations. Cable speed is taken as
0.334 m/s. The main goal of modelling such a complex industrial problem is to
achieve process optimisation. This is governed typically by minimisation of the
flow-induced residual stress locked into the coating, and in addition, acceptable
levels of pressure-drop across the die. The flow response of the coating material
and the die design (Matallah et al, 2000) both have a role to play in this
optimisation procedure. Pressure-drop predictions provide some means of
correspondence between simulation and practice.

An exponential Phan-Thien/Tanner (PTT) differential constitutive model is
selected to represent the rheometrical behaviour of low and high density
polyethylene melts (LDPE and HDPE) in steady shear and uniaxial flow.
Typically, such material samples display both shear thinning and strain
softening properties and an exponential PTT model is capable of reproducing
such behaviour in qualitative form (Phan-Thien and Tanner, 1977; Saramito
and Piau, 1994). Simple shear and uniaxial flows are used to evaluate the PTT
parameter set (e, &), for which a close fit to the experimental data must be
established. To calibrate pressure drops as a function of flowrate and compare
experimental with predicted observations, a nineteen to one axi-symmetric
contraction flow is adopted. For this flow, both single and multi-mode models
are implemented. Once optimality in parameter set is established, we turn
attention to tube-tooling flow and the multi-mode simulations for LDPE and
HDPE polymer coatings.

The numerical implementation is a Taylor-Petrov-Galerkin/pressure-
correction scheme that involves a finite element time-stepping technique
(Matallah et al, 1998), in conjuction with a recovery scheme to capture
continuous velocity gradients. Both decoupled and coupled numerical
approaches have been employed previously for a single mode analysis
(Mutlu et al., 1998a), where the results were found to be comparable. Here, only
coupled solutions are considered for single-mode computations. For efficiency
and pragmatism, multi-mode calculations are performed via a decoupled
approach. This strategy is supported by the fact that in many flows the
kinematics themselves do not vary significantly with variation of material
(Pearson and Richardson, 1983), and hence a reasonable approximation is a
linearisation of the system, adopting frozen coefficients and Picard iteration.
This implies segmenting the equations of the complete system into those for
stress and kinematics separately, computing each to a steady state with frozen



coefficients. We note here that the choice of initial frozen kinematic fields are
taken as associated with viscoelastic and shear thinning behaviour. Such a
pragmatic approach is adopted similarly by others (see Schoonen et al. (1998),
but with fixed inelastic kinematics).

Single mode modelling is pragmatic, recognised as qualitative not quantitative,
and yet effective in terms of relatively low computational cost. A flowrate-
maximum shear rate relationship may be established for a particular material
and flow, such as within a contraction flow. Once this behaviour has been
determined, such knowledge may be employed to seek an acceptable
rheometrical parameter fit within a neighbourhood of the maximum shear rate,
referencing standard viscometric flows. This model specification may then be
utilised to predict behaviour in a more general complex flow, such as in a wire-
coating setting. To satisfy such criteria, single-mode modelling unfortunately
leads to continually having to adjust parameter fits to suit each different flow
problem (with flowrate). In this regard, preference shifts to the multi-mode
scenario. In contrast, multi-mode modelling with single choice of rheological
parameters provides a closer match to the shear viscosity data over a range of
shear rates. This facilitates consistent and wide ranging application for
complex flows without parameter adjustment. In addition it is possible in the
multi-mode context, to identify the contribution of each mode to the total stress
and hence determine the most dominant component.

We commence with a single-mode analysis for a Phan-Thien/Tanner (PTT)
model and consider the fitting of this model to the rheometrical data of Walters
et al. (1994), supplied for two independent case studies. The first is essentially a
parameter fitting study for viscometric flows, steady simple shear and pure
extension. Fitting of the various material parameters (e, ¢ and u;) is
investigated for shear viscosity in shear flow. Likewise, elongational viscosity
behaviour is charted under steady uniaxial extension, according to a Binding
analysis for contraction flow (Binding, 1988). The second case study, involves
simulations for a more complex flow, the contraction flow (Walters et al., 1994).
Here, selected combinations of material parameters, that represent different
fluids recommended from the first case study, is employed at different flowrate
settings. Of course, ideally one requires a model that for one set of parameters
approximates flow over a wide range of conditions. The single mode case
proves inadequate for this task. Quantitative agreement is sought on predicted
pressure-drop against the available experimental pressure-drop/flowrate data.

The ultimate objective of this work is to relate the significance and
sensitivity of the match for the chosen constitutive model to the flow response
of the polymer melts in question, under tube-tooling processing conditions.
Proceeding in a structured manner from the preliminary case studies above, a
single-mode analysis is conducted for this complex industrial flow. Particular
attention is paid to pressure-drop and stress build-up across the flow from
entry to exit. A second aspect to this work carries over to a multi-mode
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analysis, under which the three problem settings outlined above are revisited,
see (Azaiez et al., 1996; Quinzani ef al., 1990) for motivation. From a single-mode
analysis it is observed that pressure-drop prediction is sensitive to the
determination of the material parameters of the PTT model. These are governed
by the maximum shear rate sustained in the process at any specific flowrate.
Nevertheless, for the complex industrial flows of interest, that involves flow
through a tube-tooling die and draw-down section, experimental data is
unavailable. Hence for guidance, we turn to a comparison between single and
multi-mode model simulations to provide greater insight on the underlying
flow behaviour of principle significance.

2. Governing equations and constitutive model

The flow of shear and elongational thinning LDPE and HDPE fluids is
modelled using a multi-mode Phan-Thien/Tanner (PTT) model, invoking both
single and multi-mode approximations. The momentum and continuity

equations are given as

pz—? =Vr—puVu — Vp, @

V-u =0, 2)

with velocity vector #, fluid density p, pressure p, stress 7, time f and rate
of deformation tensor D= (Vu+ Vu')/2. Within the single mode
approximation, the stress 7 is decomposed into two parts, viscous and
polymeric parts viz

T= 7+ 22D, 3)
for which us is a solvent viscosity. The extra stress tensor 71 is then defined by
fri+ A = 2uD, 4)
A= (1-5)R+5h=fraDn-noD) ®
where f1s given by
A
f=exp {2 trace(n)] , (6)
M1

see Phan-Thien and Tanner (1977); Phan-Thien, 1978. Material parameters A;
and u,, represent relaxation time and polymeric viscosity, respectively. The
zero shear viscosity is then

Mo = 1+ p2. (7

Model parameters (e = 0), (0 = ¢ = 2) are non-dimensional parameters that
can be evaluated by fitting to experimental data. V and A are upper and



lower-convected derivatives, whose combination introduces second normal
stress effects.

The PTT model has been chosen because of its shear thinning and strain
softening properties, as displayed by the melts in question. Within the complex
flows of interest both shear and extension are present. It is instructive,
therefore, to analyse the PTT model response in pure shear and extension in
1solation. With this in mind, we first present the theoretical response of this
model in ideal flows, for which we are able to conduct a multi-variate
sensitivity analysis in (e, & w1) against experimental values of shear viscosity
us and extensional viscosity w, given by Walters et al (1994). It is found
appropriate to first seek an optimal fit to the shear viscosity, prior to qualifying
goodness of fit to extensional viscosity, see below.

In the multi-mode context, the equations of state are given for each mode
(@) as

fimi+ N1 = 2uiD, @®)

T= Zfi, 9

and f; is defined as above, but with respect to each mode (7). Accordingly, )\‘i
represents the relaxation time of each mode. A vanishing solvent viscosity is
considered in the multi-mode case i.e. up = 0 appropriate for polymer melts, so
that here the partial zero-shear viscosity for each mode () is uf = wj. In this
case, € is the only parameter that is varied, as £ is chosen to be zero, see on.
Hence Equations. 8 and 9 are solved with Equation 1 and 2 for momentum and
continuity.

In completely general form, retaining a solvent contribution we consider a
steady simple shear flow with shear rate y. Following (Arsac ef al., 1994), the
representation of the total shear viscosity wu, over all modes is the sum of the
partial shear viscosities, viz.

where the total stress is

. wifi
=t ) e b
where each f; satisfies
[fi+ (9 a2 - o n(r) —2¢ (W3- =0. Ay

Accordingly, first and second normal stress-differences, N; and N, respectively,
are defined as

. 2u A1 7
N = : 12
D=2 e )
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N = — N, (13)

In contrast, for a single mode approximation, the summation collapses to a single
term.

In steady uniaxial extension, the elongational viscosity w, is a function of
extension rate €, of the form

. 244 M
1o(€) = 3z + . + - , (14)
‘ Zi:f? —2)e(1—¢ fi+XNed—9

where each f; is now determined from
{ff —Nel— & — 201 — 5)2} In(f) — 6(Ae2el — H =0. (15)

Equations (11) and (15) are solved in each case for the relevant f; through a
Newton-Raphson iteration, from which ws, u., and N; may be determined. We
note that via Equation 13 the second normal stress-difference, No, may be
expressed via dependency on £ and V. In this form, it may be observed that as
& tends to zero then so does N,. Hence, in the multi-mode context, where £ is
taken as zero for simplicity, this implies vanishing N9, which in turn justifies
the setting of uy = 0.

3. Numerical scheme

Single-mode solutions are generated employing a coupled procedure previously
described in detail in (Matallah et al, 1998). The coupled scheme involves
solving for kinematics and stress simultaneously. The implementation is a
fractional-stage time stepping scheme, woven around a pressure-correction
method, that involves some three stages within each time step. The first stage
solves for velocity and stress, in a predictor-corrector doublet. The second
stage, solves for a pressure temporal increment. The third stage computes a
correction to the velocity field, enforcing incompressibility at each time step to
the order of the scheme. The scheme embodies implicit and explicit treatment
simultaneously, and hence is of classical semi-implicit type. Diffusion terms are
approximated with a Crank Nicolson discretisation over a time step, which
introduces implicitness and stability for these viscous flows. A direct method of
solution is employed to solve for the pressure equation step, whilst indirect
Jacobi iteration is invoked for the remaining stages. Also, the benefits are
realised of stability enhancing recovery-based methods and consistent
streamline upwinding procedures, that are incorporated within the
implementation (Zienkiewicz and Zhu, 1995; Matallah et al, 1998). For these
single-mode coupled calculations a continuation procedure in relaxation time
parameter is employed to reach a specific value of A, chosen appropriately,
(see on for discussion).



With a multi-mode decoupled procedure, a frozen kinematic field
corresponding to a single-mode solution (A*) is used in Equation (8) to
solve for stress components and each mode (;) of the PTT model in parallel,
corresponding to (A}, u}) parameters. For simplification, in the multi-mode
context, the solvent part of the viscosity uz = 0, and hence for the polymeric
part of each mode (;), u; may be replaced by the partial zero-shear rate
viscosity w; and the relaxation time A} by A;. Non-dimensional numbers are

defined as follows. For each mode (1), a Weissenberg number is

We' = \; @, (16)
Lch
where, U, L., are velocity and length scales, respectively. An average single
mode A}™ is estimated from the experimental data following the procedures
outlined in Ref. Gunter ef al. (1995). This value is gathered from the base
material function fits to satisfy us, ., V1. For the LDPE polymer, AT is taken
as bs, giving a Weissenberg number of We**® of 28 according to Equation 16.
Similarly, A7* is 9s for HDPE polymer, from which We®* equals 50.
The total zero-shear viscosity is given viz

po=Y_ui 17

Also, the shear elastic modulus g; for each mode (¢), is defined as

I
&= (18)
Time steps of O(1072—10"%) are used and convergence to a steady state is
monitored via a relative temporal increment norm on the solution taken to a
tolerance of O(10™ %). A summary of the steps in the numerical procedure is
provided as follows:

Stage 1: calculate a Newtonian field (u, p), as in Ref. Hawken et al. (1990).

Stage 2: Starting from the Newtonian solution and quiescent initial stress
conditions a single-mode viscoelastic solution is calculated for AP*. The
Recovery coupled scheme is used with a solvent viscosity of ws = 0.01ug.
Thus, viscoelastic kinematics are derived.

Stage 3: Commencing from such a single-mode solution, each of the three
stress modes is calculated in a decoupled sense, on resetting the solvent
viscosity to zero and freezing the viscoelastic kinematics. For each mode (¢), the
viscosity, pressure and stress are non-dimensionalised as follows

/J“i “ Uch Uch *

e — — . sk gy
(m) i L, p chhp and 7 = y; Lo, T; 19)

Mo
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Stage 4: The total stress is then calculated through Equation 9. Updated
velocity and pressure fields are recomputed by freezing the total stress. Here
nondimensionalisation is performed according to the total zero-shear viscosity
Mo given by Equation 17. After a single pass, this procedure is noted to correct
the pressure filed, meanwhile variation in the velocity field is found to be
insignificant, so that further computation is found subsequently to be
unnecessary.

4. Parameter fitting for steady shear and pure extension
4.1 Single mode analysis
Under a single mode analysis, which can be taken as qualitative only, we
consider the case of an LDPE polymer. The investigation into parameter
sensitivity commences with the polymeric viscosity coefficient w;. The zero
shear viscosity is estimated as 54,700 Pa.s. Employing different fits to the
experimental shear data, a single mode relaxation time is evaluated as Ay of 5s
for LDPE, as cited above (see also Gunter et al, 1996; Mutlu et al., 1998a;
Walters et al., 1994). The density p for both polymers considered is 760 Kg/m?>.
4.1.1 w; variation. Theoretically in steady shear flow, by increasing the
parameter u; and keeping (e, £) fixed, the PTT model thins at high shear rates
and accordingly, will give rise to diminishing pressure-drop due to decreasing
flow resistance. When w; = 0, there is no polymeric contribution. In Figure 2a,
we indicate that the u; parameter (recorded in non-dimensional form) plays an
important role when the range of the shear rates is high. As the shear rates
observed experimentally (Walters ef al., 1994) increase, it is necessary to adjust
w1 to match the data for any isolated shear rate extrema. The inadequacy of a
fixed parameter is clearly apparent here in contrast to the multi-mode model
(see on). Experimental data were measured for shear viscosity at shear rates
between 0.1s™ ' to 1s™ ' and 10s™ ! to 10°s™ L. On the other hand in steady
uniaxial extension, the extensional viscosity for the LDPE fluid exhibits strain-
softening at high strain-rates, as illustrated in Figure 2b. Such materials may
display some hardening at low strain-rates. The PTT model displays a slight
increase of the extensional viscosity at extension rates less than unity, before
decreasing to a high strain rate limiting plateau. The experimental
measurements for elongational viscosity were taken between strain rates of
10s™ 'and 10°s™ 1. We comment that the Binding Analysis, used here to derive
the experimental u, data, is an approximate theory (Binding, 1988; Cogswell,
1972; Binding, 1993; Binding et al., 1998). The only difference observed in the fit
for different settings of w; is in the tail of the curve at high strain rates. As in
Figure 2, larger values of w; that asymptote to unity, tend to inherit viscosity
behaviour of lesser w; values over lower shear rate ranges. However, it is
necessary to gradually increment values of w; towards unity for reasons of
numerical convergence in the continuation procedure.
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4.1.2 € variation. We proceed to analyse the effect of increasing e at fixed
(&, mp). In steady shear flow, the viscosity of the PTT model decreases
correspondingly, but at a lower rate than with increase of w;. Shear thinning
behaviour of this form, with increasing €, will generate a decrease in pressure-
drop. In Figure 3a with € = 0.15, the PTT model provides a near-optimal least
squares fit across the complete range of shear rates displayed, for a match to
the experimental data at a maximum value of ¥ = 103s~!. In contrast, a best fit
for shear rates less than 10s™ ! is for a value of e = 0.7. Switching to uniaxial
extension, a reduction in elongational viscosity with increase in € is observed,
yet without influencing the asymptotic plateau at high strain rates. Clearly,
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Table 1.
Material parameters

here there is only limited experimental data available and the model can only
give a qualitative representation of elongational behaviour.

4.1.3 &€ variation. Finally, adjusting the parameter £ for constant values of
w1 and e, gives a decrease in the shear viscosity for increasing & At high values
of € = 1.0, there is barely any change in the shear viscosity for 0 = ¢ = 0.1.
Some departure from the experimental values is noted at the lower value of
€ = 0.15 for £ =0.1. The elongational viscosity is unaffected by such minor
adjustment in parameter ¢ that is with the exception of ¢ =1, for which a
constant elongational viscosity is derived. The comment above regarding
quality of representation also applies here.

4.2 Multi-mode analysis

Table I provides material data for LDPE and HDPE polymers at a temperature
of 200°C (Davies et al., 1996), in the form of relaxation times and partial zero-
shear rate viscosities for a three-mode approximation. The fits to the shear data
yield zero-shear viscosities of 105,390 and 139,184 Pa.s for LDPE and HDPE,
respectively. Note, the variation to the single-mode case is due to the difference
in parameters that alters the fits. Any solvent viscosity contribution is taken
as minuscule for the polymer melts of interest, simply a mathematical
convenience to both aid data fitting and numerical convergence. For a melt any
solvent contribution is insignificant in practice; hence in the multi-mode
context, u, is assumed to vanish. Here, this is made practically possible from a
numerical standpoint via the decoupled approach employed. Also, the second
normal stress difference (/V5) is negligible compared with the first normal stress
difference (/V;). Hence from Equation 13, the value of the non-dimensional
parameter £ is small, and to simplify the analysis can be taken as zero. To
estimate the remaining parameter e, the shear viscosity is plotted against the
shear rate in Figure 3a for LDPE and Figure 4a for HDPE with various values
of €. For both materials, the best fit for 10> = ¥ = 10°s™! corresponds to a
value of € of unity. At such a value, we observe from both Figures 3b and 4b,
the elongational viscosity (w,) fits provide appropriate trends in general
behaviour, but gives a lower estimated value than the limited set of
experimental data. This is due to the inability of the PTT model to match both
shear and elongational data simultaneously.

LDPE HDPE
Ad(s) wi (Pa.s) 8i = wi/X Ai(s) wi(Pa.s) gi = wi/\i
Model 1 0.017 1234 72588 0.017 2792 164222
Model 2 0.87 15982 18370 0.87 19595 22523
Model 3 33.9 88174 2601 59.57 116797 1961
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From the knowledge gained through the single-mode study, we observe that
the key factor to estimating the pressure-drop accurately in complex flows (see
below) is the quality of fit to the shear viscosity “in situ” at the associated
maxima of shear rate. Bearing this point in mind, in Figure 3 for LDPE we
compare shear and elongational viscosity fits to the experimental data for both
the single mode of A\; = 55 (from above) and a three-mode model. In general,
and accordance with Figure 3a for shear viscosity, the multi-mode case
provides the better fit to the experimental data, throughout a wide range of
shear rate. The multi-mode trends of response for elongational viscosity of
Figure 3b is a much better reflection of the actual fluid properties than those
observed with a single-mode approximation. Nevertheless, the match here is
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Figure 4.
Rheometrical data fits
with e variation for
3-mode HDPE
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(a) Shear viscosity
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(b) Elongational viscosity

somewhat adrift from the experimental data values, derived from the Binding
analysis. The same fitting procedure has also been carried out using a seven
mode model. It is of note that no substantial improvement of fit is obtained if
seven modes are employed in place of three (see Matallah et al (2000)).

5. Contraction flow

Armed with the parameter fits to steady shear and pure extension, we proceed
to analyse a contraction flow, testing our simulated solution pressure-drops
across the domain against those observed experimentally at a series of different
flowrates (Walters et al., 1994).



5.1 Problem specification

Polymeric wire-

A schematic flow diagram for the axi-symmetric 19:1 contraction flow with its coating flows
associated finite element mesh is represented in Figure 5. The finite element

discretisation is represented by 1830 elements and 3829 nodes. This problem is

representative of flow in a contraction Capillary rheometer. The flow may be

assumed to be symmetric about the central axis. Characteristic length and

velocity scales are taken as the radius R, of the die tube and mean exit velocity

417
U.,, whilst the zero-shear rate viscosity ug is considered as the characteristic
viscosity. A non-dimensional Reynolds number is defined as
U.R
Re = PY clte ’ (20)
Ho
and, for a single relaxation time, a Weissenberg number is taken as
U.
We == /\ipeC F . (21)
c
, Ur=0, 2% =0 (1 =0)
————————————————————————————————————————————————————————— 7 Vi=0
l 1 V,= V(r)
r
U =
Ve = V(r)
T=1(r) Solid wall
(a) Schematic flow diagram
I !
|
]ll"“Hu,_H
1 )
—
===
| —7T Figure 5.
1 el . A
| =T Schematic flow diagram
i .
and finite element mesh
11
Il e}
] i, e
(b) Finite element mesh

for 19:1 contraction
geometry
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For the multi-mode case, see above for comparable definitions. With respect to
boundary conditions, no-slip conditions are taken on the downstream tube
walls, and symmetry conditions apply on the flow centerline. The upstream
length is chosen to be sufficiently large 68R,, to establish fully developed
Poiseuille flow in the inlet region. The downstream die length is 40R.. At the
domain exit, a fixed pressure datum is adopted for consistency and a fully
developed Poiseuille flow prevails. Each individual flowrate is treated as a
separate problem to which a steady state is sought. Though we are interested
in steady state solutions, we note that these complex flows are transient in
Lagrangian sense, so that a particle following the flow will in fact encounter
different conditions at different locations (or times). For a single-mode, initial
conditions are taken of a Newtonian kinematic filed, coupled to a fully relaxed
stress field with appropriate inlet boundary modification. In the multi-mode
case, initial kinematics are supplied from a prior single-mode computation.
Then for each stress component mode, it is found suitable to impose relaxed
inlet boundary conditions that rapidly adopt their appropriate levels in the
entry flow region.

5.2 Results for a single mode model
In this section, we analyse our results in trends only for single-mode modeling.
To establish a pressure drop versus flowrate relationship numerically and
to compare this to experimental observations, three flowrates have been
employed for different PTT fluid parameter sets (e, £), in combination with u,.
A given flowrate, ), covers a particular shear-rate range. The shear viscosity
us(v) may be adjusted through wy, € and & parameters to fit the experimental
data. Indeed, rising w; tending towards uo, governs the second Newtonian
plateau level for wy(y). Hence, elevating u,, effectively extends the range of
fit for the u,(y) function over wider y ranges. Thus the larger the value of @),
the more wimust be elevated to enhance the u(y) fit to the data. The
classification of various test fluids, with u-values rising up to wo, highlights
Fluids B-H as indicated in Table II. There, wu; = 0.875 u for Fluid B, w; =
0.99u for Fluid C, u; = 0.99%uy for Fluid D, u; = 0.99u, for Fluid E,
1 = 0.998u for Fluid F and u; = o for Fluids G and H. We note that, lower
up-values aids numerical convergence as the solvent contribution incorporates
damping into the system. For the single mode approximation, a single
relaxation time of AP =5s is adopted to represent the relaxation time
spectrum for an LDPE polymer (see Ref. Davies ef al (1996)). Reynolds
numbers are of O(107%), whilst Weissenberg number values at various
flowrates are summarised in Table III, and pressure-drop results in Table IV
and Figure 6.

Overall, a summary of our findings reads as follows. By comparing the
numerical and experimental data for these three flowrates, and investigating
the parameter sensitivity of shear visocity on u,, € and ¢ at different shear



Fluid B 111 = 0.875x0

Fluid C M1 = 0.99#0

Fluid D 1 = 0.995p0
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By:(0.1,0.01) C1: (0.15,0.02) D;: (0.15,0.02)
By: (0.3,0.01) Cy: (2.0,0.02) D-: (0.3,0.02)
Bs: (2.0,0.01)
Fluid E g = 0.999u Fluid F 1 = 0.998p0 Fluid G 1 = po, =0
(0.3,0.02) (0.15,0.02) 419
G]Z e=1.0
GZ: €e=25
G3Z e=23.0
Flud H w; = wo, £€=0
Hy:e=10 Table II.
Hy e=25 Classification of
Hs e =30 fluids
LDPE HDPE
Q mm?s 2.37 39.9 2.37 34.0
Mode 1 0.10 1.73 0.10 1.47 Table III.
We Mode 2 5.30 884 5.30 75.3 We for contraction
Mode 3 204.6 3444 360.3 5156.7 flow
, Ap = (MPa) Ap 57 (MPa) ApS™ (MPa)
Q mm®/s LDPE Single mode, A = 5s Multi-mode
2.37 3.27 4.09, fluid ¢ 590, G, e =1.0 Table IV.
We =30.18, e = 0.15, £=0.02 4.00, Go, € = 2.5 Pressure drop for
39.9 109 11.7, fluid Dy 103, Gy, e = 1.0 contraction flow,

We = 508.0, € = 0.3, £=0.02

LDPE polymer

rates, we conclude that the most influential parameter governing Ap is w;; the
remaining parameters (e, &) provide fine tuning of the fit. The choice of
parameter u; depends on the value of maximum shear rate .y attained
for any given flowrate. Hence with knowledge of V.., w1 may be determined
by choosing a value to fit the experimental data of (Walters et al, 1994). In
Figure 7, maximum shear rates observed for the contraction flow are plotted
against flowrate, from which a quadratic relationship emerges. From this, one
may predict ym.x for a given flowrate and hence extract a particular u;-fit

(Figure 6).
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Figure 6.

Pressure drop v flowrate
for contraction problem,
single mode model

Figure 7.

Maximum shear-rate v
flowrate correlation for
contraction problem,

LDPE
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It is clear that with a single-mode approximation, it is necessary to continually
adjust the fluid parameters at each flowrate setting, to adequately reproduce
quantitative pressure-drop predictions. This keeps pace with the shear rate
maxima observed, though does not provide a single fluid model representation
suitable across a range of flowrates. This is a drawback to the use of a single
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mode PTT model. Essentially, what is being achieved here is to provide
a localised fit to data around the range of shear rates that dominates the
process at each particular flowrate. As regards incrementation of w; towards
unity, this leads to more severe numerical difficulties in convergence to
steady state. Thus care in continuation with this parameter is advisable
purely on numerical grounds. At this juncture, it is natural to widen the study
to embrace a multi-mode approximation and follow a similar line of
investigation.

5.3 Results for a three-mode model

With a three-mode PTT approximation, results for both LDPE and HDPE
grade polymers are presented and compared to the experimental data for the
contraction flow. Comparison against the single-mode approximation is made
only for the LDPE polymer, and £ is taken as zero (see above, Ny < N7). Our
observations are that computation times double from single to three-mode
model calculations.

5.3.1 LDPE fluid. With the LDPE polymer a first flowrate of € =
39.96mm?/s is considered, for which the values of Weissenberg numbers
for the corresponding three modes are given in Table III. The Reynolds
number is Re = 1.8 X 1077 and the experimental pressure-drop is 10.9 MPa.
With fluid Gy offering a parameter combination (e, & u1) = (1.0,0.0, ), a
simulated pressure-drop of 10.3MPa is predicted. This contrasts to the best
single mode computation of 11.7MPa for fluid D, with (€,& w) =
(0.3,0.02,0.995u).

In contrast, at a second lesser flowrate of @; = 2.37mm?/s, and the same
parameter combination (e, & u1) = (1.0, 0.0, wo), ie. fluid Gy, a simulated
pressure-drop of 590 MPa is generated; an over-estimation compared to the
experimental data of 3.27 MPa. This is in accordance with the shear viscosity
fit, where for the shear rate range 10 = v = 10?s™!, the best fit renders a value
of e = 2.5. For fluid G, of € = 2.5, the pressure-drop is 4.00 MPa compared to
4.09MPa for the single mode calculation of fluid C;. Figure 8a summarises
graphically the comparison of numerical and experimental data at both
flowrates, including the single mode results. The values are tabulated in a
unified manner in Table IV. Conventional use of the PTT class of models, is
restrictive with a constant value for the parameter e. If this parameter is taken
in the range 1.0 = € = 2.5, pressure-drop will be better estimated by the
multi-mode than the single mode model for the flowrate range 2.37 = Q =
40mm?/s. We observe in Figure 8a, that the discrepancy from the experimental
value is huge for the single mode fluid C; — parameter set (e, & w) =
(0.15,0.02,0.99u0) at Q2 = 39.9mm?/s.

5.3.2 HDPE fluid. For the HDPE polymer, computations are conducted for
flowrates of @ = 2.37mm?/s and €, = 34.0mm?/s. At the former flowrate,
the fitting of the PTT model to the experimental shear viscosity, as in Figure 4,
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provides an equally good dual set of parameters with either (e, & w) =
(2.5,0.0, o) or (€, & w1) = (3.0,0.0, ), 1.e. fluid Hs or Hs. Simulated pressure-
drops are 7.40 MPa for fluid Hs € = 2.5, and 6.90 MPa for fluid H3e = 3.0,
that compare against an experimental value of Ap = 5.83MPa. It is implied
that additional increase in the parameter €, will lead to further decrease in

pressure-drop.

At a second flowrate of @, = 34.0mm?/s, and according to Figure 4,
the best fit to the shear viscosity data, results in the set of parameters



(€, & ) = (1.0,0.0, uo) for the range 10> = y = 10°s7, ie. fluid H;. The
simulated pressure-drop 1s 19.2MPa, whilst the experimental value is
19.9MPa. This evidence is taken as endorsement for the choice of multi-
mode representation with fluids G; and H1, that is wholy acceptable across the

flowrates selected. A summary of simulated and experimental pressure-drop
values is provided for HDPE in Table V and Figure 8b.

6. Wire-coating flow

Having established the goodness of fit to experimental pressure-drop data for a
complex contraction flow, we now proceed to the industrial flow of interest that
provides the motivation for this study. The flow quantities of specific relevance
are residual flow-induced stress and pressure-drop. The former is fresh
information to be gathered for this problem that is important to control coating
properties. These quantities have impact on the optimisation of the process
design. Only fluid G; (i.e. one set of parameters (e, & = (1,0)) is adopted
throughtout the study of tube-tooling wire-coating for LDPE and H; for HDPE
polymer, since a reasonable fit is achieved in the shear-rate range under
consideration (y = 10°s™1).

6.1 Problem specification

A schematic flow diagram for the tube-tooling problem with its finite element
mesh is displayed in Figure 9. The flow enters the annular tube AB, then a
converging cone section BC and a land region CD, and is draw-down by the
wire in a converging cone form DE, and coating part of the wire EF, as shown
in Figure 9a. Due to symmetry, it is necessary to model only one half of the
problem. Characteristic length and velocity scales are taken as the horizontal
distance between the die exit of the tube and the contact point on the wire, i.e.
the draw-down length L.« and the velocity of the wire U, respectively.
The zero-shear viscosity u is considered as the characteristic viscosity. Here,
the same definition for Reynolds and Weissenberg numbers is taken as for the
contraction flow problem. Boundary conditions are given as follows. No-slip
conditions are taken on tube walls for the die tube, ABCD and D’C'B’A’. At the
entry AA’ a fully developed Newtonian annular velocity profile corresponding
to a specific flow rate @ is imposed, (U, =0 and V, = V,(r)). From this
velocity profile, a PTT stress profile is generated analytically. This specifies
inlet flow boundary conditions. Free surface boundary conditions along DE

Q mm*/s Ap B (MPa) HDPE Ap 5™ (MPa)

2.37 5.83 740, fluid Hy, € = 2.5
6.90, fluid Hs, € = 3.0
34.0 19.9 19.2, fluid Hy, e = 1.0
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Table V.
Pressure drop for
contraction flow,
HDPE polymer,
multi-mode
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Figure 9.

Schematic diagram and
finite element mesh for
wire coating tube-tooling
die

Table VI.
Number of elements
per region

Wire E F
(a) Schematic flow diagram

(b) Finite element mesh

and F'D’ are taken equivalent to the average velocity per cross sectional area,
consistent with draw-down flow. On EF, the fluid is considered to be moving
with the wire (no slip). A uniform structured mesh is used in the finite element
discretisation, 2680 elements and 5649 nodes, (thoroughly investigated in our
prior studies, see Mutlu ef al. (1998a); Mutlu et al (1998b)). To capture sharp
velocity gradients near singular regions, different meshes were employed
elsewhere (see Mutlu ef al. (1998a); Mutlu et al., 1996). In the present study only
the finest mesh of Ref. (Mutlu et al., 1998a) is employed, for which the number
of elements per region is given in Table VI

ABB'A’ BCCB’ CbDC DEED’ EFFE

680 680 120 800 400




6.2 LDPE fluid

Table VII provides values of Weissenberg numbers for an LDPE polymer, with
material parameters given in Table I, for a standard flowrate (1Q) and double
flowrate (2Q). The Reynolds numbers are Re=15x10"* and Re=
3.0x 1074, respectively. Figure 10 plots the pressure-drop line for both 1Q
and 2Q, along a sample line tangential to the flow. The sample line for plotting
lies along the inner radius of the annular settings. Cross stream variation
is hardly significant. Simulated pressure-drop values are 6.90 and
8.40 MPa, respectively, and are compared to 7.49 and 11.2MPa using fluid C;
for the single mode approximation (as (Mutlu ef al,, 1998a) using w1 = 0.99uo,
€ =0.15 and &€= 0.02). Pressure-drop results are tabulated in Table VIII
accordingly. For the single mode, pressure-drop at 2Q is one and a half times
that at 1Q, whilst for a multi-mode model, this factor reduces to 1.22. Overall,
the trend in variation of pressure-drop is similar for single and multi-mode
models in the tube-tooling die sections, notwithstanding the elevation of the
single-mode 2Q result. In contrast in the draw-down section for the single
mode, pressure-drop is almost constant for 1Q, but for 2Q, it increases around
the location where the fluid meets the wire. Traveling with the wire, pressure

LDPE HDPE
1Q 2Q 1Q 20

Mode 1 0.095 0.19 0.095 0.19
We Mode 2 4.843 5.686 4.843 5.686
Mode 3 188.7 3774 332.3 664.6
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Table VII.
We for tube-tooling
flow

12 T
— 1-mode, 1Q
----- 1-mode, 2Q
— 3-modes, 1Q
== 3-modes, 2Q

10

8

Ap (MPa) 6

4

—?,833 -1.167 -0.500 0.167 0.833 1.500
Axial distance, z*

Figure 10.
Tube-tooling flow,
streamwise pressure
profiles, single and multi-
mode models, LDPE
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Table VIII.
Pressure drop for
tube-tooling flow

diminishes to zero. However for a multi-mode model, the pressure-drop
decreases continuously with only a slight change in the slope on encountering
the wire. These differences in response for these models, are due to the
variation in radial shear stress gradients, particularly at die exit, that are about
one third of the level observed in the inlet tube-tooling section.

In Figure 11, the shear stress is plotted along the inner annular radius. A
constant value is observed in the inlet tube (shear flow), followed by a change
of sign over the contracting flow within the tube-tooling cone. Shear stress
increases in absolute value as the cone contracts. In the land section, the degree
of shearing increases again, sharply at the start, flattens across the land region,
and rises slightly at the end. There is then a dramatic sharp drop and
oscillation in shear stress at the inlet of the draw-down cone. This is where
there is a sudden adjustment from the annular shear flow to an extensional
drawing flow. Thereafter, it decreases gradually but smoothly along the draw-
down cone, to increase slightly when the wire is met and subsequently remains
steady. This behaviour is similar for both flowrates, only differing in the
absolute level of the stress.

For the normal stress component in the axial direction, 7,,, a sharp
oscillation is experienced at the inlet of the tube-tooling cone due to the sudden
geometry changes. This is followed by a smooth increase in 7,, as the shear
rate increases in the cone. Over the land region, 7., suddenly decreases as
the polymer enters, and remains fairly constant to the land region exit. A
shock is noted in the transition from land to draw-down flow. Over the draw-
down section, the stress component decreases. A smaller variation rate in 7.,
is observed as opposed to that in the tube-tooling cone, and there is a
marginal increase when the fluid meets the wire. A relaxation of stress occurs
within the coating flow on the wire, with larger slope than in the draw-down
cone.

In summary, a build-up of shear and normal stress is observed in the tube-
tooling cone, followed by relaxation in the draw-down and wire-coating flow
sections.

For stress, the trends are identical for single to multi-mode cases, the
differences lie in the stress levels, that are dictated by the inlet flow. At inlet
and for the shear rates that apply there, see Figure 3, a closer match to u is
observed with a single mode model, yielding a lower value of shear stress (via
viscosity) than with the multi-mode model. We note also that in the converging

LDPE HDPE
1Q 2Q 1Q 2Q
Ap (MPa) Single mode 7.49 11.2, fluid ¢ - -
Multi-mode 6.90 8.40, fluid G, 124 154, fluid H,
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tube the rate of increase of 7., in the multi-mode case is greater than that
corresponding to the single mode instance. This is due to the influence of the
shortest mode A; = 0.017 s; see below for further comment on the contributions
due to the separate modes.

6.3 HDPE fluid

Results for the HDPE polymer are also presented at the same flowrates as
above for LDPE. In this case, the parameter € = 1.0 represents the best fit to
the shear viscosity, as in Figure 4, hence fluid H;. Predicted pressure-drops
are 12.4 and 15.4 MPa for the two associated flowrates, respectively. Figure 12
shows a sample line plot for pressure-drop at both flowrates, and a similar
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Figure 11.
Tube-tooling flow,
streamwise stress
profiles, single and
multi-mode models,
LDPE, (@) 7., (b) 7
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Figure 12.
Tube-tooling flow,
streamwise stress
profiles, standard and
double flowrate, HDPE,
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Axial distance, z*

trend to that for the LDPE polymer is observed. We note that pressure-drop at
the double flowrate is 1.24 times as great as that at the standard flowrate; the
factor relating pressure-drops is similar to that found for LDPE, of 1.22. It is
conspicuous that corresponding pressure-drops for HDPE polymer are almost
double those for LDPE polymer. According to Figure 13, line plots for shear
and normal stress components along a sample line tangential to the flow, the
general behaviour of stress is similar to that for LDPE, though scales are
doubled in shear stress and increase by about 20 per cent in normal stress.
These findings are in keeping with general expectations for these materials and
flows.

6.4 Analysis of separate modes

To understand the contribution of each mode (¢) to the total stress of the
multi-mode model, both 7,, and 7,, are plotted for the standard flowrate,
LDPE polymer in Figure 14. Of the individual modal contributions, the two
shorter relaxation time modes dominate. The shear stress is dominated by the
shortest relaxation time. This is true for all cases studied, covering both
materials and flowrates, as confirmed in Figure 14 for LDPE and Figure 15
for HDPE.

Alternatively, for the 7,, component, according to Figure 14 and LDPE,
the shortest relaxation time dominates in the tube-tooling cone; this made
dictates the shape of the total stress in all the sections of the flow. In
contrast, the second shortest relaxation time dominates in the inlet tube and
draw-down sections, including the flow on the wire. For the HDPE polymer, as
in Figure 15, the shortest relaxation time dominates throughout the tube-
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tooling die sections, whilst in the draw-down, the second shortest relaxation
time dominates.

7. Conclusions

A contraction flow has been used effectively to demonstrate how single and
multi-mode PTT models perform in quantitatively replicating pressure-
drop/flowrate data. Essentially this is governed by the goodness of fit to
the shear viscosity. In this regard, the multi-mode instance performs better
across the range of shear rates of interest. In the single-mode case
reasonable qualitative correspondence has been derived, presupposing a
judicious choice of averaged relaxation time, which has been possible here.
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Figure 13.
Tube-tooling flow,
streamwise stress
profiles, multi-mode,
HDPE, (a) 7, (b) 7
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Figure 14.
Tube-tooling flow,
streamwise stress
profiles for individual
stress mode, LDPE,
(a) TTZ) (b) TZZ
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Also, the choice of material parameter combination must vary with each
flowrate (and its associated maximum shear rate) to adequately reflect the
experimental data. This generates different fluid model representations and
demonstrates the shortcomings of an averaged mode approximation. The
multi-mode alternative, performs better in this respect with a fixed fluid
parameter set.

In the more generalised context of the industrial tube-tooling wire-
coating flow, the differences in results on stress distributions and pressure-
drop between these modelling approaches is more stark. Here, the multi-mode
approximation reveals the fine detail of stress response throughout the
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flow, peak values attained and dominance of individual components. The key
point emerges that the shorter relaxation time modes are observed to dominate
within the process. These modes are of the order of less than one second,
being synonymous with a representative particle residence time as it travels
through the flow domain. Stress and pressure-drop levels are practically
doubled for the HDPE above the LDPE polymer, which is consistent with
practical industrial experience for these materials. Also pressure-drop
variation with flowrate doubling is held to be more realistic with the multi-
mode option. The differences from single to multi-mode total stress appear
minimal in the draw-down and coating regions, taking into account the
elevations in stress levels within the steady shear die entry flow as discussed
above.
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Figure 15.
Tube-tooling flow,
streamwise stress
profiles for individual
stress mode, HDPE,
(a) Trz (b) T2z




HFF
124

432

References

Arsac, A., Carrot, C., Guillet, J. and Revenu, P. (1994), “Problems originating from the use of the
Gordon-Schowalter derivative in the Johnson-Segalman and related models in various
shear-flow situations”, J. Non-Newtonian Fluid Mech., 55, pp. 21-36.

Azaiez, ], Guénette, R. and Ait-Kadi, A. (1996), “Entry flow calculations using multi-mode
models”, J. Non-Newtonian Fluid Mech., 66, pp. 271-81.

Baaijens, HP.W. Evaluation of constitutive equations for polymer melts and solutions in
complex flows PhD. Thesis Eindhoven University of Technology, Netherlands.

Binding, D.M. (1993), Techniques in Rheological Measurement, Chap 1. Collyer, A.A., (Eds)
Chapman and Hall, London, UK.

Binding, D.M. (1988), “An approximate analysis for contraction and converging flows”, J. Non-
Newtonian Fluid Mech., 27, pp. 173-89.

Baaijens, F.P.T., Selen, SH.A., Baaijens, HP.W., Peters, GW.M. and Meijer, HEH. (1997),
“Viscoelastic flow past a confined cylinder of a LDPE melt”, /. Non-Newtonian Fluid Mech.,
68, pp. 173-203.

Binding, D.M,, Blythe, A.R., Gunter, S., Mosquera, A.A., Townsend, P. and Webster, MLF. (1996),
“Modelling polymer melt flows in wirecoating processes related fields”, /. Non-Newtonian
Fluid Mech., 64, pp. 191-206.

Binding, D.M., Couch, M.A. and Walters, K. (1998), “The pressure dependence of the shear and
elongational properties of polymer melts”, /. of Non-Newtonian Fluid Mech., 79, pp. 137-55.

Cogswell, F.N. (1972), “Converging flow of polymer melts in extrusion dies”, Polymer Eng. Sci.,
12, pp. 64-74.

Caswell, B. and Tanner, RI. (1978), “Wirecoating die design using finite element methods”,
Polymer Eng. Sci., 18 No. 5, pp. 416-21.

Davies, A. R., Walters, K. and Binding, D. M. “An analysis of the discrete relaxation spectra of 3
polyethylene samples for BICC group”, private communications. Technical report,
Institute of non-Newtonian Fluid Mechanics, University of Wales, Aberystwyth, June 20,
1996.

Fenner, R.T. and Williams, ].G. (1967), Trans. J. Plastics Inst., pp. 701-6.

Gunter, S., Webster, MLF. and Townsend, P. (1995), “BICC internal report®, in, Computer Science
Department, University of Wales, Swansea.

Gunter, S., Townsend, P. and Webster, M.F. (1996), “Simulation of some model viscoelastic
extensional flows”, Int. J. Num. Meth. Fluids, 23, pp. 691-710.

Gupta, M., Hieber, C.A. and Wang, K.K. (1997), “Viscoelastic modelling of entrance flow using
multimode Leonov model”, Int. J. Numer. Meth. Fluids, 24, pp. 493-517.

Hawken, D.M., Tamaddon-Jahromi, H.R., Townsend, P. and Webster, M.F. (1990), “A Taylor-
Galerkin based algorithm for viscous incompressible flow”, Int. J. Num. Meth. Fluids, 10,
pp. 327-51.

Huang, H.C, Townsend, P. and Webster, M.F. (1994), Numerical Grid Generation in
Computational Fluid Dynamics and Related Fields, Weatherill, N.P., Eiseman, PR,
Hauser, J., Thompson, J.F. (Eds), Pineridge Press, Swansea.

Mitsoulis, E. (1986), “Fluid flow and heat transfer in wire coating: A review”, Advances in
Polymer Technology, 6 No. 4, pp. 467-87.

Matallah, H., Townsend, P. and Webster, MLF. (1998), “Recovery and stress-splitting schemes for
viscoelastic flows”, J. Non-Newtonian Fluid Mech., 75, pp. 139-66.



Matallah, H., Townsend, P. and Webster, M.F. (2000), “Viscoelastic multi-mode simulations of
wire-coating”, J. Non-Newtonian Fluid Mech., 90, pp. 217-41.

Mitsoulis, E., Wagner, R. and Heng, F.L. (1988), “Numerical simulation of wire-coating low-
density polyethylene: Theory and experiments”, Polymer Eng. Sci., 28 No. 5, pp. 291-311.

Mutly, I, Townsend, P. and Webster, M.F. (1996), “Adaptive solutions for viscoelastic flows”,
Commun. Numer. Meth. Eng., 12, pp. 643-55.

Mutlu, I, Townsend, P. and Webster, M.F. (1997), Mathematics of finite elements and
applications-highlights 1996, Whiteman, J.R., (Eds) Wiley, Chichester vol 18 pp. 299-312.

Mutly, I, Townsend, P. and Webster, M.F. (1998a), “Simulation of cable-coating viscoelastic
flows with coupled and decoubled schemes”, J. Non-Newtonian Fluid Mech., 74, pp. 1-23.

Mutly, L., Townsend, P. and Webster, M.F. (1998b), “Computation of viscoelastic cable coating
flows”, Int. J. Numer. Meth. Fluids, 26, pp. 697-712.

Phan-Thien, N. (1978), “A non-linear network viscoelastic model”, . Rheol, 22, pp. 259-83.

Pearson, ] R.A. and Richardson, S.M. (1983), “Computational Analysis of Polymer Processing”, in
Applied Science Publishers Ltd, London and New York.

Phan-Thien, N. and Tanner, RI. (1977), “A new constitutive equation derived from network
theory”, J. Non-Newtonian Fluid Mech., 2, pp. 353-65.

Quinzani, L.M., McKinley, G.H., Brown, R.A. and Armstrong, R.C. (1990), “Modeling the rheology
of polyisobutylene solutions”, /. Rheol., 34, pp. 705-48.

Saramito, P. and Piau, ] M. (1994), “Flow characteristics of viscoelastic fluids in an abrupt
contraction by using numerical modelling”, J. Non-Newtonian Fluid Mech., 52, pp. 263-88.

Schoonen, J.F.M., Swartjes, F.HM.,, Peters, G.W.M.,, Baaijens, F.P.T. and Meijer, H.E.H. (1998), “A

3D numerical/experimental study on a stagnation flow of a polyisobutylene solution”,
J. Non-Newtonian Fluid Mech., 79, pp. 529-61.

Walters, K., Binding, D. M. and Evans, R. E. “Modelling the rheometric behaviour of 3
polyethylene melts”. Technical report, Institute of non-Newtonian Fluid Mechanics,
University of Wales, Aberystwyth, May 10, 1994.

Zienkiewicz, O.C. and Zhu, J.Z. (1995), “Superconvergence and the superconvergent patch
recovery”, Finite Element in Analysis and Design, 19, pp. 11-23.

Polymeric wire-
coating flows

433




